
 72

Software Design Pattern Using : Algorithmic Skeleton Approach

S. Sarika
Lecturer,Department of Computer Sciene and Engineering

Sathyabama University, Chennai-119.
sarish_sar1@yahoo.co.in

Abstract - In software engineering, a design pattern
is a general reusable solution to a commonly occurring
problem in software design. A design pattern is not
a finished design that can be transformed directly
into code. It is a description or template for how to
solve a problem that can be used in many different
situations. Object-oriented design patterns typically
show relationships and interactions between classes
or objects, without specifying the final application
classes or objects that are involved. Many patterns
imply object-orientation or more generally mutable
state, and so may not be as applicable in functional
programming languages, in which data is immutable
or treated as such..Not all software patterns are
design patterns. For instance, algorithms solve
computational problems rather than software design
problems.In this paper we try to focous the
algorithimic pattern for good software design.

Key words - Software Design, Design Patterns,
Software esuability,Alogrithmic pattern.

1. INTRODUCTION
Many studies in the literature (including some by

these authors) have for premise that design patterns
improve the quality of object-oriented software systems,
because design patterns are supposed to improve the
quality of systems[1], for example, a tangled
implementation of patterns impacts negatively quality
Also, patterns generally ease future enhancement at the
expense of simplicity. There is little empirical evidence
to support the claims of improved reusability,
expandability and understandability as put forward in
when applying design patterns. We present detailed
results for three design pat-terns: Abstract Factory,
Composite, Flyweight and three quality attributes:
reusability, understandability, and expandability.

The following set of quality attributes, based on
their relevance to design patterns[2].

Fig 1. Primary design pattern

 1.1Attributes related to design :
 Expandability : The degree to which the design of a
system can be extended.
 Simplicity : The degree to which the design of a
system can be understood easily.
 Reusability : The degree to which a piece of design
can be reused in another design.

 1.2 Attributes related to implementation:
 Learn ability : The degree to which the code source of
a system is easy to learn.
 Understandability : The degree to which the code
source can be understood easily.
 Modularity : The degree to which the implementation
of the functions of a system are independent from one
another.

1.3 Attributes related to runtime :
Generality: The degree to which a system provides a
wide range of functions at runtime.
 Modularity at runtime: The degree to which the
functions of a system are independent from one another
at runtime.

2. ALGORITHMIC SKELETON
In computing, algorithmic skeletons (a.k.a.

Parallelism Patterns) are a high-level parallel
programming model for parallel [3] [4] and distributed
computing. Algorithmic skeletons take advantage of
common programming patterns to hide the complexity
of parallel and distributed applications. Starting from a
basic set of patterns (skeletons), more complex patterns

International Journal of Computer Network and Security (IJCNS) Vol. 3 No. 1 ISSN : 0975-8283

 73

can be built by combining the basic ones.This section
describes some well known Algorithmic Skeleton
patterns. Additionally, the patterns signature in the
Skandium library is provided for clarity.

FARM is also known as master-slave. Farm represents
task replication where the execution of different tasks
by the same farm are replicated and executed in
parallel.
Farm(Skeleton<P,R> keleton){...}

PIPE represents staged computation. Different tasks
can be computed simultaneously on different pipe
stages. A pipe can have a variable number of stages,
each stage of a pipe may be a nested skeleton pattern.
Note that an n-stage pipe can be composed by nesting
n-1 2-stage pipes.
<X> Pipe(Skeleton<P,X> stage1,
Skeleton<P,X> stage2){...}

FOR represents fixed iteration, where a task is
executed a fixed number of times. In some
implementations the executions may take place in
parallel.[5]
For(Skeleton<P,X> skeleton, int times){...}
WHILE represents conditional iteration, where a given
skeleton is executed until a condition is met.
public While(Skeleton<P,P> skeleton,
Condition<P> condition){...}

IF represents conditional branching, where the
execution choice between two skeleton patterns is
decided by a condition.
If(Condition<P> condition,
Skeleton<P,R> trueCase, Skeleton<P,R>
falseCase){...}

MAP represents split, execute, merge computation. A
task is divided into sub-tasks, sub-tasks are executed in
parallel according to a given skeleton, and finally sub-
task's results are merged to produce the original task's
result[6].
<X,Y> Map(Split<P,X> split,
Skeleton<X,Y> skeleton, Merge<Y,R>
merge){...}

D&C represents divide and conquer parallelism. A task
is recursively sub-divided until a condition is met, then
the sub-task is executed and results are merged while
the recursion is unwound.
DaC(Condition<P> condition,
Split<P,P> split, Skeleton<P,R>
skeleton, Merge<R,R> merge){...}

SEQ does not represent parallelism, but it is often used
a convenient tool to wrap code as the leafs of the
skeleton nesting.

public Seq(Execute <P,R>
execute){...}

3. EXAMPLE PROGRAM
The following example is based on the Java

Skandium library for parallel programming.The
objective is to implement an Algorithmic Skeleton
based parallel version of the QuickSort algorithm
using the Divide and Conquer pattern. Notice that the
high-level approach hides Thread management from the
programmer.

// 1. Define the skeleton program

Skeleton<Range, Range> sort = new
DaC<Range, Range>(

new ShouldSplit(threshold, maxTimes),

 new SplitList(),

 new Sort(),

 new MergeList());

// 2. Input parameters

Future<Range> future = sort.input(new
Range(generate(...)));

// 3. Do something else here.

// ...

// 4. Block for the results

Range result = future.get();

The first thing is to define a new instance of the
skeleton with the functional code that fills the pattern
(ShouldSplit, SplitList, Sort, MergeList). The
functional code is written by the programmer without
parallelism concerns.

The second step is the input of data which triggers
the computation. In this case Range is a class holding
an array and two indexes which allow the
representation of a subarray. For every data entered into
the framework a new Future object is created. More
than one Future can be entered into a skeleton
simultaneously.

The Future allows for asynchronous computation,
as other tasks can be performed while the results are
computed. The functional codes in this example
correspond to four types Condition, Split, Execute, and
Merge.

public class ShouldSplit implements
Condition<Range>{

 int threshold, maxTimes, times;

 public ShouldSplit(int threshold,
int maxTimes){

 this.threshold = threshold;

International Journal of Computer Network and Security (IJCNS) Vol. 3 No. 1 ISSN : 0975-8283

 74

 this.maxTimes = maxTimes;

 this.times = 0;

 }

 @Override

 public synchronized boolean
condition(Range r){

 return r.right - r.left >
threshold &&

 times++ < this.maxTimes;

 }

}

4. ALGORITHMIC EFFICIENCY
In computer science, efficiency is used to describe

properties of an algorithm relating to how much of
various types of resources it consumes[7][8].
Algorithmic efficiency can be thought of as analogous
to engineering productivity for a repeating or
continuous process.

 4.1 SOFTWARE METRICS
The two most frequently encountered and

measurable metrics of an algorithm are:-speed or
running time - the time it takes for an algorithm to
complete, and 'space' - the memory or 'non-volatile
storage' used by the algorithm during its operation.

Transmission size - such as required bandwidth
during normal operation or size of Eternal memory-
such as temporary disk space used to accomplish its
task.

4.2 SPEED
The absolute speed of an algorithm for a given

input can simply be measured as the duration of
execution (or clock time) and the results can be
averaged over several executions to eliminate possible
random effects[9]. Most modern processors operate in
a multi-processing & multi-programming environment
so consideration must be made for parallel processes
occurring on the same physical machine, eliminating
these as far as possible.

4.3 MEMORY
It is possible to make an algorithm faster at the

expense of memory. This might be the case whenever
the result of an 'expensive' calculation is cached rather
than recalculating it afresh each time[10]. The
additional memory requirement would, in this case, be
considered additional overhead although, in many
situations, the stored result occupies very little extra
space and can often be held in pre-compiled static

storage, reducing not just processing time but also
allocation & deallocation of working memory.

4.4.PRECOMPUTATION
Precomputing a complete range of results prior to

compiling, or at the beginning of an algorithm's
execution[11], can often increase algorithmic efficiency
substantially. This becomes advantageous when one or
more inputs is constrained to a small enough range that
the results can be stored in a reasonably sized block of
memory.

5. SOFTWARE VALIDATION VERSUS
HARDWARE VALIDATION

An optimization technique that was frequently
taken advantage of on legacy platforms was that of
allowing the hardware (or microcode) to perform
validation on numeric data fields[12]. The choice was
to either spend processing time checking each field for
a valid numeric content in the particular internal
representation chosen or simply assume the data was
correct and let the hardware detect the error upon
execution. The choice was highly significant because to
check for validity on multiple fields (for sometimes
many millions of input records), it could occupy
valuable computer resources. Since input data fields
were in any case frequently built from the output of
earlier computers[13]

6. CONCULSION
 Different software development models will focus

the desing effort at different points in the development
process. Newer development models, such as
algorithamic skeleton often employ desing case
development and place an increased portion of the
desing in the hands of the developer, before it reaches a
formal team of designers. In this paper we foucs that
the Algorithmic skeletons take advantage of common
programming patterns to hide the complexity of parallel
and distributed applications.

7. REFERENCES
[1] Beck, Kent; Ward Cunningham (September 2009).

"Using Pattern Languages for Object-Oriented Program".
OOPSLA '87 workshop on Specification and Design for
Object-Oriented Programming. OOPSLA '09.

[2] Baroni, Aline Lúcia; Yann-Gaël Guéhéneuc and Hervé
Albin-Amiot (June 2003). "Design Patterns
Formalization" (PDF). Nantes: École Nationale
Supérieure des Techniques Industrielles et des Mines de
Nantes.]

[3] Erl, Thomas (2009). SOA Design Patterns. New York:
Prentice Hall/PearsonPTR. pp. 864. ISBN 0-13-613516-1.

[4] http://soa.sys-con.com/node/809800
[5] Meyer, Bertrand; Karine Arnout (July 2006).

"Componentization: The Visitor Example". IEEE
Computer (IEEE) 39

International Journal of Computer Network and Security (IJCNS) Vol. 3 No. 1 ISSN : 0975-8283

 75

[6] Laakso, Sari A. (2003-09-16). "Collection of User
Interface Design Patterns". University of Helsinki, Dept.
of Computer Science.
http://www.cs.helsinki.fi/u/salaakso/patterns/index.html.
Retrieved 2008-01-31.

[7] Heer, J.; M. Agrawala (2006). "Software Design Patterns
for Information Visualization". IEEE Transactions on
Visualization and Computer Graphics 12 (5): 853.
doi:10.1109/TVCG.2006.178..

[8] Chad Dougherty et al (2009). Secure Design Patterns.
http://www.cert.org/archive/pdf/09tr010.pdf.

[9] Simson L. Garfinkel (2005). Design Principles and
Patterns for Computer Systems That Are Simultaneously
Secure andUsable..

[10] "Yahoo! Design Pattern Library".
http://developer.yahoo.com/ypatterns/. Retrieved 2008-
01-31.

[11] "How to design your Business Model as a Lean
Startup?".
http://torgronsund.wordpress.com/2010/01/06/lean-
startup-business-model-pattern/. Retrieved 2010-01-06.

[12] Pattern Languages of Programming, Conference
proceedings (annual, 2009) [1]

[13] McConnell, Steve (June 2004). "Design in
Construction". Code Complete (2nd ed.). Microsoft
Press. pp. 104. ISBN 978-0735619678. "Table 5.1
Popular Design Patterns"

International Journal of Computer Network and Security (IJCNS) Vol. 3 No. 1 ISSN : 0975-8283

